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Abstract



The human genome is hierarchically folded in the three-dimensional nucleus. Pairwise chromatin contacts cluster in discrete chromosomal regions, termed topologically associating domains (TADs). Whether TADs play an essential role in gene expression regulation in evolution and genetic diseases, is analyzed in this thesis by computationally integrating genome-wide contact maps with various data along the linear genome.

Thereby, functionally related genes cluster in TADs and share distal regulatory elements to enable coordinated gene expression. TADs are primarily stable during evolution and associate with conserved expression profiles. Disruptions of TADs by genomic rearrangements during evolution or in genetic diseases are associated with expression changes. Chromatin contact data and TADs can be used to interpret gene regulatory effects of structural variations, as demonstrated for subjects with diverse clinical phenotypes. Furthermore, a computational method is developed, which uses genomic sequence features and tissue-specific protein binding signals to predict genome-wide chromatin contacts with high accuracy.

This work shows that TADs are not only structural units of chromosomes but also crucial functional building blocks of genomes, which represent regulatory environments for genes. Therefore, it will be increasingly important to consider genome folding in both, genomic research and clinical practice.
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Abstract

Paralog genes arise from gene duplication events during evolution, which often lead to similar proteins that cooperate in common pathways and in protein complexes. Consequently, paralogs show correlation in gene expression whereby the mechanisms of co-regulation remain unclear. In eukaryotes, genes are regulated in part by distal enhancer elements through looping interactions with gene promoters. These looping interactions can be measured by genome-wide chromatin conformation capture (Hi-C) experiments, which revealed self-interacting regions called topologically associating domains (TADs). We hypothesize that paralogs share common regulatory mechanisms to enable coordinated expression according to TADs. To test this hypothesis, we integrated paralogy annotations with human gene expression data in diverse tissues, genome-wide enhancer–promoter associations and Hi-C experiments in human, mouse and dog genomes. We show that paralog gene pairs are enriched for co-localization in the same TAD, share more often common enhancer elements than expected and have increased contact frequencies over large genomic distances. Combined, our results indicate that paralogs share common regulatory mechanisms and cluster not only in the linear genome but also in the three-dimensional chromatin architecture. This enables concerted expression of paralogs over diverse cell-types and indicate evolutionary constraints in functional genome organization.



2.1 Introduction

Paralog genes arise from gene duplication events during evolution. The resulting sequence similarity between paralog pairs might lead to similar structure and function of encoded proteins (Koonin 2005). Since paralogs often form part of the same protein complexes and pathways, it is advantageous for the cell to coordinate their expression (Makova and Li 2003).

In eukaryotes, genes are regulated in part by binding of transcription factors to promoter sequences and to distal regulatory regions such as enhancers. By chromatin looping, enhancer bound proteins can physically interact with the transcription machinery at the promoter of genes (Ptashne 1986; Deng et al. 2012; Carter et al. 2002; Tolhuis et al. 2002; Spitz and Furlong 2012). These chromatin looping events can be measured by chromatin conformation capture (3C) experiments (Dekker et al. 2002), which use proximity-ligation, and more recently high-throughput sequencing (Hi-C) to measure DNA-DNA contact frequencies genome-wide (Lieberman-Aiden et al. 2009).

These interaction maps revealed tissue-invariant chromatin regions, named topologically associating domains (TADs), which have more interactions within themselves than with other regions (Dixon et al. 2012; Nora et al. 2012; Sexton et al. 2012). TADs seem to be stable across cell types and conserved between mammals (Dixon et al. 2012; Rao et al. 2014; Vietri Rudan et al. 2015). Regions within TADs show concerted histone chromatin signatures (Dixon et al. 2012; Sexton et al. 2012), gene expression (Le Dily et al. 2014; Nora et al. 2012), and DNA replication timing (Pope et al. 2014). Furthermore, disruption of TAD boundaries is associated to genetic diseases (Ibn-Salem et al. 2014; Lupiáñez et al. 2015).

We wondered if the Hi-C data could reveal evolutionary pressure driving paralogous expansion to favour the clustering of paralogs in the three-dimensional chromatin architecture and their regulation by common enhancer elements to enable the cell to fine-tune and coordinate their expression. To do this, we collected Hi-C data from a number of studies profiling contacts in several cell types from human (Dixon et al. 2012; Rao et al. 2014), mouse and dog (Vietri Rudan et al. 2015), and we compared the properties of these data with respect to paralog genes. Our results pinpoint that pairs of paralog genes tend to be co-regulated and co-occur within TADs more often than equivalent control gene pairs. When placed in different TADs, paralogs still tend to co-occur in the same chromosome and have more contacts than control gene pairs. In contrast, close paralogs in the same TAD have significantly less contacts with each other than comparable gene pairs, which could indicate that these pairs of paralogs encode proteins that functionally replace each other.

These observations have relevance for the study of the evolution of chromatin structure and suggest that tandem duplications generating paralogs are under selection according to how they contribute or not to the fine structure of the genome as reflected by TADs. Thus TADs provide a favorable environment for the co-regulation of duplicated genes, which is likely followed by the evolutionary generation of additional regulatory mechanisms allowing the separation of paralogs into different TADs in the same chromosome but connected, and eventually their migration into different chromosomes.



2.2 Materials and methods


2.2.1 Selection of pairs of paralog genes

All human genes and human paralog gene pairs were retrieved from Ensembl GRCh37 (Ensembl 75) database by using the biomaRt package (Durinck et al. 2009b, 2005) from within the statistical programming environment R. For each gene we downloaded the Ensembl gene ID, HGNC symbol, transcription sense, transcription start site (TSS) coordinates, and gene length. We only considered protein coding genes with “KNOWN” status that are annotated in the 22 autosomes or the 2 sexual chromosomes. For each gene we used the earliest TSS coordinate. Within this set of genes, all pairs of human paralog genes were downloaded from Ensembl (Vilella et al. 2009). This resulted in a total of 19,430 human genes; more than half of those had at least one human paralog gene (Fig. 7.1A).

However, many human genes have more than one paralog (Fig. 7.1B). To avoid overrepresentation of genes, we filtered the pairs such that each gene occurred only once. Thereby we selected the pairs by minimizing the rate of synonymous mutations (dS) between them using a maximum-weighted matching graph algorithm implement in the python package NetworkX (Galil 1986). The number of synonymous mutations between paralogs has been used to approximate the duplication age (Lan and Pritchard 2016). Therefore our implementation favours the selection of young paralog pairs for larger paralog families and guaranties that each gene occurs only once. This filtering strategy resulted in 62566256 unique paralog pairs for downstream analysis (Table 2.1). We observed that modications of this strategy to select unique paralog genes did not affect essentially the results of our study (e.g. by selecting pairs while maximising dS; Fig. 7.2).

Analogously to the human data we downloaded all pairs of protein coding paralog genes from the Mus musculus (GRCm38.p2) and Canis lupus familiaris (CanFam3.1) genomes from Ensembl. The numbers of filtered gene pairs are shown in Table 2.1 . Furthermore, we related human paralog genes to orthologs in mouse and dog only if there was a unique one-to-one orthology relationship reported in the Ensembl database.


Table 2.1 Filtering of human paralog gene pairs


	Paralog pairs
	Human
	Mouse
	Dog





	All paralog pairs
	46546
	110490
	28293



	One pair per gene
	6256
	7323
	4959



	On the same chromosome
	1560
	2397
	658



	Close pairs (TSS distance ≤\leq 1 Mb)
	1114
	1774
	455



	Distal pairs (TSS distance >> 1 Mb)
	446
	623
	203







2.2.2 Enhancers to gene association

Human enhancer annotations, including their genome locations and the corresponding genes they regulate, were obtained from the supplementary data of a recent CAGE analysis (Andersson et al. 2014). In this study, the activity of enhancers and genes was correlated within 500kb over hundreds of human cell types to provide a regulatory interaction map between 27,451 enhancers and 11,604 genes consisting of 66,942 interactions.



2.2.3 Topological associating domains

We obtained topological associating domain (TAD) calls from two recently published Hi-C studies in human cells (Dixon et al. 2012; Rao et al. 2014). TAD locations mapped to the hg18 genome assembly were converted to hg19 using the UCSC liftOver tool (Hinrichs et al. 2006). A/B-compartment and sub-compartment annotations were obtained from high-resolution Hi-C experiments in human GM12878 cells (Rao et al. 2014).



2.2.4 Hi-C interaction maps

Individual chromatin-chromatin contact frequencies from IMR90 cells at 5 kb resolution were retrieved from (Rao et al. 2014)(NCBI GEO accession: GSE63525). We used only reads with mapping quality ≥\geq 30 and normalized the raw contact matrices applying the provided normalization vectors for KR normalization by the matrix balancing approach (Knight and Ruiz 2013). We only considered pairwise gene interactions if the TSSs of the two genes were located in different bins of the Hi-C matrix with normalized contacts ≥\geq 0. Capture Hi-C data between promoter regions in human GM12878 cells were downloaded from ArrayExpress (accession: E-MTAB-2323) (Mifsud et al. 2015).



2.2.5 Randomization

We analysed the distribution of paralog pairs over chromosomes depending on the linear distance between them. For doing so, we sampled gene pairs from all human genes with equal and independent probability and refer to them as random gene pairs.

For strand analysis, co-localisation in TADs, and Hi-C contact quantification between paralog pairs, we constructed a carefully sampled control set of gene pairs as null-model. Thereby we accounted for the linear distance bias observed for paralog pairs. First, we calculated all possible non-overlapping pairs of human genes on the same chromosome. From the resulting set of gene pairs we randomly sampled pairs according to the linear distance distribution of paralog gene pairs. Therefore, we assigned to each gene pair a sampling weight that is proportional to the probability to sample the pair. The sampling weight w(gi,gj)w(g_{i}, g_{j}) for a given pair of genes gig_{i} and gjg_{j} with absolute distance di,jd_{i,j} is defined as

w(gi,gj)=fparalogs(di,j)fall(di,j)
w(g_{i}, g_{j}) = \frac{ f_{\mathrm{paralogs}}(d_{i,j}) }{f_{\mathrm{all}}(d_{i,j})}


where fparalogsf_{\mathrm{paralogs}} is the observed frequencies of distances in the paralog genes and fall(di,j)f_{\mathrm{all}}(d_{i,j}) the frequency of pairwise distances in the population of gene pairs from which we sample. We computed the observed frequencies by dividing the distances into 90 equal-sized bins after log10log_{10} distance transformation and counted occurrences of gene pairs for each bin. The resulting sampling weights for all gene pairs are normalized to sum up 1 and were then used as probabilities for sampling:

pdist(gi,gj)=w(gi,gj)∑i,jw(gi,gj)(#eq:DistProb)
p_{\mathrm{dist}}(g_{i}, g_{j}) = \frac{ w(g_{i}, g_{j}) }{ \sum_{i,j} w(g_{i}, g_{j}) }
(\#eq:DistProb)


Next, for comparison of shared enhancers we slightly modified the sampling of gene pairs to account for the observation that paralogs tend to be associated to more enhancers than non-paralogs (Fig. 7.1D). Assuming that the number of enhancers associated to genes is independent from the distance, we computed sampling probabilities by pdist+eh(gi,gj)=pdist(gi,gj)⋅peh(ni)⋅peh(nj)
p_{\mathrm{dist+eh}}(g_{i}, g_{j}) = p_{\mathrm{dist}}(g_{i}, g_{j}) \cdot p_{\mathrm{eh}}(n_{i}) \cdot p_{\mathrm{eh}}(n_{j})
 whereby nin_{i} and njn_{j} are the number of enhancers associated to gig_{i} and gjg_{j}, respectively and peh(n)p_{\mathrm{eh}}(n) is the probability to sample a gene associated to n enhancers:

peh(n)=weh(n)∑i=0Nweh(i)(#eq:EhProb)
p_{\mathrm{eh}}(n) = \frac{ w_{\mathrm{eh}}(n) }{ \sum_{i=0}^{N} w_{\mathrm{eh}}(i) }
(\#eq:EhProb)


and weh(n)=fparalogs(n)fall(n)
w_{\mathrm{eh}}(n) = \frac{ f_{\mathrm{paralogs}}(n) }{f_{\mathrm{all}}(n)}


where fparalogs(n)f_{\mathrm{paralogs}}(n) and fall(n)f_{\mathrm{all}}(n) gives the frequency of genes associated to nn enhancers observed in the paralog pairs and all gene pairs, respectively.

Analogously, we sampled sets of pairs accounting additionally for the observed bias in paralog pairs to be in the same strand. pdist+eh+strand(gi,gj)=pdist(gi,gj)⋅peh(ni)⋅peh(nj)⋅pstrand(si,j)
p_{\mathrm{dist+eh+strand}}(g_{i}, g_{j}) = p_{\mathrm{dist}}(g_{i}, g_{j}) \cdot p_{\mathrm{eh}}(n_{i}) \cdot p_{\mathrm{eh}}(n_{j}) \cdot p_{\mathrm{strand}}(s_{i,j})
 whereby si,js_{i,j} is 11 if both genes, gig_{i} and gjg_{j}, are transcribed from the same strand and 00 otherwise. The probability pstrand(si,j)p_{\mathrm{strand}}(s_{i,j}) is computed in the same way as the probability by number of enhancers peh(n)p_{\mathrm{eh}}(n) in equation (2.2).

Lastly, we sampled a set of gene pairs by taking additionally the gene length into account and computed sampling probabilities by pdist+eh+len(gi,gj)=pdist(gi,gj)⋅peh(ni)⋅peh(nj)⋅plen(li)⋅plen(lj)
p_{\mathrm{dist+eh+len}}(g_{i}, g_{j}) = p_{\mathrm{dist}}(g_{i}, g_{j}) \cdot p_{\mathrm{eh}}(n_{i}) \cdot p_{\mathrm{eh}}(n_{j}) \cdot p_{\mathrm{len}}(l_{i}) \cdot p_{\mathrm{len}}(l_{j})


whereby plen(l)p_{\mathrm{len}}(l) for gene length ll is computed in the same way as for distances between gene pairs (equation (2.1)) and by dividing gene lengths into 20 equal sized binds after log10log_{10} transformation of gene lengths in bp.

For each paralog pair on the same chromosome within 1 Mb distance, we sampled 1010 random gene pairs with this procedures each resulting in n=156,000n=156,000 sampled gene pairs that served as background in our statistical analysis. These sampling approaches resulted in similar distribution of linear distances (Fig. 7.3), associated enhancers of each gene (Fig. 7.4), same strand (Fig. 7.5), and gene lengths (Fig. 7.6).



2.2.6 Statistical tests

We compared observed fractions of gene pairs, on the same chromosome, with the same transcription sense, within the same TAD or compartment, and with at least one shared enhancer between pairs of paralogs and random or sampled pairs using the Fisher’s exact test. Hi-C contact frequencies and genomic distances between TSS of gene pairs were compared using a Wilcoxon rank-sum test. All analyses were carried out in the statistic software R version 3.2.2.




2.3 Results


2.3.1 Distribution of paralog genes in the human genome

Paralogs are homologous genes that arise from gene duplication events. Their common ancestry and replicated sequence often leads to similar structure and function in related pathways and protein complexes. We therefore hypothesised that the transcription of paralogs should have a tendency for co-regulation, which could correspond to their position in the genome and within TADs. To test this hypothesis, we first focused on the positions of paralogs in the linear genome.

From all 19,43019,430 protein coding genes in the human genome, 13,690(70.5%)13,690~(70.5\%) have at least one paralog (Fig. 7.1A). However, many human genes have several paralogs (Fig. 7.1B). From all 46,54646,546 paralog gene pairs we filtered for only one pair per gene (n=6,256)(n=6,256) and further for non-overlapping pairs on the same chromosome (n=1,560)(n=1,560) (see ). We will refer to close paralogs if their transcription start sites (TSSs) are within 1 Mb of each other (n=1,114)(n=1,114) and to distal pairs for paralogs with TSSs separated by more than 1 Mb (n=446)(n=446) (Table 2.1).

We first compared basic properties between genes that have at least one paralog copy and genes without human paralogs. Paralogs have significantly larger gene length than non-paralog genes (p=1.7×10−53p = 1.7 \times 10^{-53}, Wilcoxon rank-sum test, Fig. 7.1C), which fits the observation from (He and Zhang 2005) in yeast. Furthermore, paralogs tend to be associated to more enhancers compared to non-paralog genes (on average 3.83.8 vs. 2.52.5 enhancers per gene, p=2.89×10−70p=2.89\times10^{-70}, Fig. 7.1D) and the distance to the nearest associated enhancer is significantly shorter (p=2.71×10−22p=2.71\times10^{-22},Fig. 7.1E).

Since most genome duplication events in humans emerge through tandem duplications (Newman et al. 2015), we expected some co-localization among pairs of paralog genes. Indeed 24.9%24.9\% of paralog pairs are located on the same chromosome. We compared this to random expectation by sampling random gene pairs from all protein coding human genes and found only 5.3%5.3\% of randomly sampled gene pairs on the same chromosome (p<10−16p<10^{-16}, Fig. 2.1A).
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Abstract

Background: The human genome is highly organized in the three-dimensional nucleus. Chromosomes fold locally into topologically associating domains (TADs) defined by increased intra-domain chromatin contacts. TADs contribute to gene regulation by restricting chromatin interactions of regulatory sequences, such as enhancers, with their target genes. Disruption of TADs can result in altered gene expression and is associated to genetic diseases and cancers. However, it is not clear to which extent TAD regions are conserved in evolution and whether disruption of TADs by evolutionary rearrangements can alter gene expression.

Results: Here, we hypothesize that TADs represent essential functional units of genomes, which are selected against rearrangements during evolution. We investigate this using whole-genome alignments to identify evolutionary rearrangement breakpoints of different vertebrate species. Rearrangement breakpoints are strongly enriched at TAD boundaries and depleted within TADs across species. Furthermore, using gene expression data across many tissues in mouse and human, we show that genes within TADs have more conserved expression patterns. Disruption of TADs by evolutionary rearrangements is associated with changes in gene expression profiles, consistent with a functional role of TADs in gene expression regulation.

Conclusions: Together, these results indicate that TADs are conserved building blocks of genomes with regulatory functions that are often reshuffled as a whole instead of being disrupted by rearrangements.







3.1 Introduction

The three-dimensional structure of eukaryotic genomes is organized in many hierarchical levels (Bonev and Cavalli 2016). The development of high-throughput experiments to measure pairwise chromatin-chromatin interactions, such as Hi-C (Lieberman-Aiden et al. 2009) enabled the identification of genomic domains of several hundred kilo-bases with increased self-interaction frequencies, described as topologically associating domains (TADs) (Dixon et al. 2012; Nora et al. 2012). Loci within TADs contact each other more frequently and TAD boundaries insulate interactions of loci in different TADs. TADs have also been shown to be important for gene regulation by restricting the interaction of cell-type specific enhancers with their target genes (Nora et al. 2012; Symmons et al. 2014; Zhan et al. 2017). Several studies associated disruption of TADs to ectopic regulation of important developmental genes leading to genetic diseases (Ibn-Salem et al. 2014; Lupiáñez et al. 2015). These properties of TADs suggested that they are functional genomic units of gene regulation.

Interestingly, TADs are largely stable across cell-types (Dixon et al. 2012; Rao et al. 2014) and during differentiation (Dixon et al. 2015). Moreover, while TADs were initially described for mammalian genomes, a similar domain organization was found in the genomes of non-mammalian species such as Drosophila (Sexton et al. 2012), zebrafish (Gómez-Marín et al. 2015) Caenorhabditis elegans (Crane et al. 2015) and yeast (Hsieh et al. 2015; Mizuguchi et al. 2014). Evolutionary conservation of TADs together with their spatio-temporal stability within organisms, would collectively imply that TADs are robust structures.

This motivated the first studies comparing TAD structures across different species, which indeed suggested that individual TAD boundaries are largely conserved along evolution. More than 54% of TAD boundaries in human cells occur at homologous positions in mouse genomes (Dixon et al. 2012). Similarly, 45% of contact domains called in mouse B-lymphoblasts were also identified at homologous regions in human lymphoblastoid cells (Rao et al. 2014). A single TAD boundary at the Six gene loci could be traced back in evolution to the origin of deuterostomes (Gómez-Marín et al. 2015). However, these analyses focused only on the subset of syntenic regions that can be mapped uniquely between genomes and do not investigate systematically if TAD regions as a whole might be stable or disrupted by rearrangements during evolution.

A more recent study provided Hi-C interaction maps of liver cells for four mammalian genomes (Vietri Rudan et al. 2015). Interestingly, they described three examples of rearrangements between mouse and dog, which all occurred at TAD boundaries. However, the rearrangements were identified by ortholog gene adjacencies, which might be biased by gene density. Furthermore, they did not report the total number of rearrangements identified, leaving the question open of how many TADs are actually conserved between organisms. It remains unclear to which extent TADs are selected against disruptions during evolution (Nora et al. 2013). All these studies underline the need to make a systematic study to verify if and how TAD regions as a whole might be stable or disrupted by rearrangements during evolution.

To address this issue we used whole-genome alignment data to analyze systematically whether TADs represent conserved genomic structures that are rather reshuffled as a whole than disrupted by rearrangements during evolution. Furthermore, we used gene expression data from many tissues in human and mouse to associate disruptions of TADs by evolutionary rearrangements to changes in gene expression.



3.2 Results


3.2.1 Identification of evolutionary rearrangement breakpoints from whole-genome alignments

To analyze the stability of TADs in evolution, we first identified evolutionary rearrangements by using whole-genome alignment data from the UCSC Genome Browser (Kent et al. 2003, 2002) to compare the human genome to 12 other species. These species where selected to have genome assemblies of good quality and to span several hundred million years of evolution. They range from chimpanzee to zebrafish (Fig 3.1). The whole-genome data consists of consecutive alignment blocks that are chained and hierarchically ordered into so-called net files as fills (Kent et al. 2003). To overcome alignment artifacts and smaller local variations between genomes we only considered top-level fills or non-syntenic fills and additionally applied a size threshold to use only fills that are larger than 10 kb, 100 kb, or 1000 kb, respectively. Start and end coordinates of such fills represent borders of syntenic regions and were extracted as rearrangement breakpoints for further analysis (see Methods for details).
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Abstract

Interpretation of variants of uncertain significance, especially chromosome rearrangements in non-coding regions of the human genome, remains one of the biggest challenges in modern molecular diagnosis. To improve our understanding and interpretation of such variants, we used high-resolution 3-dimensional chromosome structure data and transcriptional regulatory information to predict position effects and their association with pathogenic phenotypes in 17 subjects with apparently balanced chromosome abnormalities. We find that the rearrangements predict disruption of long-range chromatin interactions between several enhancers and genes whose annotated clinical features are strongly associated with the subjects’ phenotypes. We confirm gene expression changes for a couple of candidate genes to exemplify the utility of our position effect analysis. These results highlight the important interplay between chromosome structure and disease, and demonstrate the need to utilize chromatin conformation data for the prediction of position effects in the clinical interpretation of cases of non-coding chromosome rearrangements.



4.1 Introduction

The importance of the integrity of chromosome structure and its association with human disease is one of the oldest and most studied topics in clinical genetics. As early as 1959, cytogenetic studies in humans linked specific genetic or genomic disorders and intellectual disability syndromes to changes in chromosomal ploidy, translocations, and DNA duplications and deletions (LeJeune et al. 1959; Ford et al. 1959; Jacobs and Strong 1959; Stankiewicz and Lupski 2002; Iafrate et al. 2004). The discovery of copy-number variants (CNVs) by microarray and sequencing technologies expanded the catalogue of genetic variation between individuals to test such associations at higher resolution (Iafrate et al. 2004; Sebat et al. 2004; Hinds et al. 2006; Conrad et al. 2006, 2010; Korbel et al. 2007; Stankiewicz and Lupski 2010; International HapMap 3 Consortium et al. 2010; Carvalho and Lupski 2016).


Over the years, analysis of disease-related structural rearrangements has illuminated genes that are mutated in various human developmental disorders (Zhang et al. 2009; Theisen and Shaffer 2010; Nambiar and Raghavan 2011; Higgins et al. 2008). Such chromosome aberrations can directly disrupt gene sequences, affect gene dosage, generate gene fusions, unmask recessive alleles, reveal imprinted genes, or result in alterations of gene expression through additional mechanisms such as position effects (Zhang et al. 2009). The latter is particularly important for the study of apparently balanced chromosome abnormalities (BCAs), such as translocations and inversions, often found outside of the hypothesized disease-causing genes (reviewed in (Kleinjan and Van Heyningen 2005)).

Position effects were first identified in Drosophila melanogaster, where chromosomal inversions placing white+ near centric heterochromatin caused mosaic red/white eye patterns.(Weiler and Wakimoto 1995) In humans, BCAs can induce position effects through disruption of a gene’s long-range transcriptional control (i.e., enhancer-promoter interactions, insulator influence, etc.), or its placement in regions with different local chromatin environments as observed in the classical Drosophila position effect variegation (reviewed in (Kleinjan and Van Heyningen 2005; Zhang and Wolynes 2015; Spielmann and Mundlos 2016)). Examples of position effect genes include paired box gene 6 (PAX6 [MIM: 607108]), for which downstream chromosome translocations affect its cis-regulatory control and produce aniridia (AN [MIM: 106210]);(Fantes et al. 1995; Kleinjan et al. 2001) twist family bHLH transcription factor 1 (TWIST1 [MIM: 601622]), where downstream translocations and inversions are associated with Saethre-Chotzen syndrome (SCS [MIM: 101400]);(Cai et al. 2003) paired like homeodomain 2 (PITX2 [MIM: 601542]) for which translocations are associated with Axenfeld-Rieger syndrome type 1 (RIEG1 [MIM: 180500]);(Flomen et al. 1998; Trembath et al. 2004) SRY-box 9 (SOX9 [MIM: 608160]), where translocation breakpoints located up to 900 Kilobases (Kb) upstream and 1.3 Megabases (Mb) downstream are associated with campomelic dysplasia (CMPD [MIM: 114290]),(Velagaleti et al. 2005) in addition to several others.(Kleinjan and Van Heyningen 2005; Kleinjan and Heyningen 1998; Lupski and Stankiewicz 2005)

The availability of genome sequencing in the clinical setting has generated a need for rapid prediction and interpretation of structural variants, especially those pertaining to de novo non-coding rearrangements in individual subjects. With the development and subsequent branching of the chromosome conformation capture (3C) technique ((Dekker et al. 2002), reviewed in (Wit and Laat 2012)), regulatory issues such as alteration of long-range transcriptional control and position effects can now be predicted in terms of chromosome organization. The high resolution view of chromosome architecture in diverse human cell lines and tissues(Lieberman-Aiden et al. 2009; Fullwood et al. 2009; Dixon et al. 2012, 2015; Sanyal et al. 2012; Phillips-Cremins et al. 2013; Rao et al. 2014; Mifsud et al. 2015) has allowed molecular assessment of the disruption of regulatory chromatin contacts by pathogenic structural variants and single nucleotide changes; examples include the study of limb malformations,(Lupiáñez et al. 2015) leukemia,(Gröschel et al. 2014) and obesity,(Claussnitzer et al. 2015) among others.(Visser et al. 2012; Roussos et al. 2014; Giorgio et al. 2015; Oldridge et al. 2015; Ibn-Salem et al. 2014; Ordulu et al. 2016) These examples underscore the importance of chromatin interactions in quantitative and temporal control of gene expression, which can greatly enhance our power to predict pathologic consequences.

To test the feasibility of prediction and clinical interpretation of position effects of non-coding chromosome rearrangements, we analyzed 17 subjects from the Developmental Gene Anatomy Project (DGAP)(Higgins et al. 2008; Ligon et al. 2005; Kim and Marcotte 2008; Lu et al. 2007; Redin et al. 2017) with de novo non-coding BCAs classified as variants of uncertain significance (VUS). Using publicly available chromatin contact information, annotated and predicted regulatory elements, and correlation between phenotypes observed in DGAP subjects and those associated with neighboring genes, we reliably predicted candidate genes exhibiting mis-regulated expression in DGAP-derived lymphoblastoid cell lines (LCLs). These results suggest that many VUS are likely to be further interpretable via long-range effects, and warrant their routine assessment and integration in clinical diagnosis.



4.2 Materials and Methods


4.2.1 Selection of subjects with apparently balanced chromosome abnormalities

BCA breakpoints and clinical data were obtained from DGAP cases for which whole-genome sequencing was performed using a previously described large-insert jumping library approach.(Higgins et al. 2008; Ligon et al. 2005; Kim and Marcotte 2008; Lu et al. 2007; Redin et al. 2017; Talkowski et al. 2011) A total of 151 cases were filtered to select only subjects whose translocation or inversion breakpoints fall within intergenic regions (GRCh37) and did not overlap known long intergenic non-coding RNAs (lincRNAs) or pseudogenes, as these elements have been shown to exert functional roles (reviewed in (Quinn and Chang 2016) (Pink et al. 2011; Muro and Andrade-Navarro 2010)). Of 151 DGAP subjects, only 17 fulfilled our selection criteria, 12 of whom had available and reportedly normal clinical array results, suggesting lack of large duplications or deletions.



4.2.2 Clinical descriptions of DGAP cases

The clinical presentation of the 17 subjects varied, ranging from developmental delay to neurological conditions, offering the opportunity to assess long-range position effects in different phenotypes. Subjects’ karyotypes are presented in the main text using the International System for Human Cytogenetic Nomenclature (ISCN2016) (Table 4.1). Detailed case descriptions are included in the Supplemental Note: Case Reports, as well as a nomenclature developed to describe chromosome rearrangements using next-generation sequencing.(Ordulu et al. 2014) Reported ages of DGAP subjects are from time of enrollment. All reported genomic coordinates use GRCh37.


Table 4.1 Description of the 17 analyzed DGAP cases with non-coding BCAs. Corresponding clinical karyotypes are reported, with overlap of breakpoints with regulatory elements (E = enhancer, DHS = DNaseI hypersensitive sites, CTCF = CTCF binding sites), and TADs from H1-hESC, IMR90, and GM12878 (1= one breakpoint within TAD, 2=both BCA breakpoints are located within TAD). Top-ranking position effect genes are provided for the +-1 Mb windows surrounding the BCA breakpoints; each gene is highlighted with different evidence supporting its inclusion (a = ClinGen known recessive genes, b= ClinGen genes with emerging and sufficient evidence suggesting haploinsufficiency is associated with clinical phenotype, c = HI scores less than 10, d = within H1-ESC TAD, e = DHS enhancer-promoter disrupted interactions).








	Subject ID and Reported Karyotype
	Disruption of Functional Elements
	Breakpoints within TADs (hESC / IMR90 / GM12878)
	Top-ranking Candidates +-1 Mb 





	DGAP017 46,X,t(X;10)(p11.2;q24.3)
	DHS
	2/2/1
	-



	DGAP111 46,XY,t(16;20)(q11.2;q13.2)dn
	CTCF
	1/1/2
	ORC6a



	DGAP113 *46,XY,t(1;3)(q32.1;q13.2)dn
	-
	2/2/2
	ASPMa



	DGAP126 46,XX,t(5;10)(p13.3;q21.1)dn
	-
	2/1/2
	-



	DGAP138 46,XY,t(1;6)(q23;q13)dn
	-
	2/2/2
	GRIK2ac



	DGAP153 46,X,t(X;17)(p11.23;p11.2)dn
	-
	1/1/1
	-



	DGAP163 46,XY,t(2;14)(p23;q13)dn
	-
	2/2/2
	SOS1cde, COCHde



	DGAP176 46,Y,inv(X)(q13q24)mat
	DHS, CTCF
	2/1/2
	ACSL4bd, COL4A5bcde



	DGAP249 46,XX,t(2;11)(q33;q23)dn
	E, DHS
	2/2/2
	SATB2bcde, SORL1e



	DGAP252 46,XY,t(3;18)(q13.2;q11.2)dn
	-
	2/2/2
	RBBP8a,GATA6bcde



	DGAP275 46,XX,t(7;12)(p13;q24.33)dn
	DHS
	1/1/2
	ANKLE2e, POLEe



	DGAP287 46,XY,t(10;14)(p13;q32.1)dn
	CTCF
	2/2/2
	-



	DGAP288 46,XX,t(6:17)(q13;q21)dn
	DHS
	2/2/2
	SOX9bcd



	DGAP315 46,XX,inv(6)(p24q11)dn
	-
	1/1/2
	-



	DGAP319 46,XX,t(4;13)(q31.3;q14.3)dn
	-
	2/1/2
	-



	DGAP322 46,XY,t(1;18)(q32.1;q22.1)
	DHS
	1/2/2
	IRF6bcd



	DGAP329 46,XX,t(2;14)(q21;q24.3)dn
	-
	1/2/2
	ZEB2bcde
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5 Prediction of chromatin looping interactions


Preamble


This chapter is submitted for publication. A preprint is available on bioRxiv:

Ibn-Salem J#, Andrade-Navarro MA. Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs. bioRxiv. 2018. doi:10.1101/257584.

The preprint is available online: https://www.biorxiv.org/content/early/2018/02/01/257584. My contributions to this publication are indicated in Table 11.1. The source code of the complete analysis is available at GitHub: https://github.com/Juppen/sevenC and https://github.com/Juppen/sevenC_analysis. Supplementary figures and links to supplementary tables are shown in Appendix D.

#corresponding author





Abstract

Background: Knowledge of the three-dimensional structure of the genome is necessary to understand how gene expression is regulated. Recent experimental techniques such as Hi-C or ChIA-PET measure long-range interactions genome-wide but are experimentally elaborate and have limited resolution. Here, we present Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs (7C).

Results: While ChIP-seq was not designed to detect contacts, the formaldehyde treatment in the ChIP-seq protocol cross-links proteins with each other and with DNA. Consequently, also regions that are not directly bound by the targeted TF but interact with the binding site via chromatin looping are co-immunoprecipitated and sequenced. This produces minor ChIP-seq signals at loop anchor regions close to the directly bound site. We use the position and shape of ChIP-seq signals around CTCF motif pairs to predict whether they interact or not.

We applied 7C to all CTCF motif pairs within 1 MB in the human genome and validated predicted interactions with high-resolution Hi-C and ChIA-PET. A single ChIP-seq experiment from known architectural proteins (CTCF, Rad21, Znf143) but also from other TFs (like TRIM22 or RUNX3) predicts loops accurately. Importantly, 7C predicts loops in cell types and for TF ChIP-seq datasets not used in training.

Conclusion: 7C predicts chromatin loops with base-pair resolution and can be used to associate TF binding sites to regulated genes in a condition-specific manner. Furthermore, profiling of hundreds of ChIP-seq datasets results in novel candidate factors functionally involved in chromatin looping. Our method is available as an R package: https://ibn-salem.github.io/sevenC/







5.1 Introduction

The three-dimensional folding structure of the genome and its dynamic changes play a very important role in the regulation of gene expression (Merkenschlager and Nora 2016; Krijger and Laat 2016). For example, while it was well known that transcription factors (TFs) can regulate genes by binding to their adjacent promoters, many TF binding sites are in distal regulatory regions, such as enhancers, that are hundreds of kilo bases far from gene promoters (Spitz and Furlong 2012). These distal regulatory regions can physically interact with promoters of regulated genes by chromatin looping interactions (Tolhuis et al. 2002; Sanyal et al. 2012), thus it is not trivial to associate TFs to regulated genes without information of the genome structure (Mora et al. 2015). Such looping interactions can be measured by chromosome conformation capture (3C) experiments (Dekker et al. 2002) and its variations to either study all interactions from single targeted regions (4C) (Simonis et al. 2006) or multiple target regions (5C) (Dostie et al. 2006), interactions between all regions genome-wide (Hi-C) (Lieberman-Aiden et al. 2009; Rao et al. 2014) or interactions mediated by specific proteins (6C (Tiwari et al. 2008) and ChIA-PET (Fullwood et al. 2009; Tang et al. 2015)).

While these experimental methods have brought many exciting insights into the three-dimensional organization of genomes (Merkenschlager and Nora 2016; Krijger and Laat 2016; Bonev and Cavalli 2016), these methods are not only elaborate and expensive but also require large amounts of sample material or have limited resolution (Sati and Cavalli 2016; Schmitt et al. 2016). As a consequence, genome-wide chromatin interaction maps are only available for a limited number of cell types and conditions.

In contrast, the binding sites of TFs can be detected genome-wide by ChIP-seq experiments, and are available for hundreds of TFs in many cell types and conditions (Dunham et al. 2012; Davis et al. 2017). Here, we propose that it is possible to use these data to detect chromatin loops.

Recent studies provide functional insights about how chromatin loops are formed and highlight the role of architectural proteins such as CTCF and cohesin (Merkenschlager and Nora 2016). CTCF recognizes a specific sequence motif, to which it binds with high affinity (Kim et al. 2007; Nagy et al. 2016). Interestingly, CTCF motifs are present in convergent orientation at chromatin loop anchors (Rao et al. 2014; Tang et al. 2015; Vietri Rudan et al. 2015). Furthermore, experimental inversion of the motif results in changes of loop formation and altered gene expression (Guo et al. 2015; Wit et al. 2015). Polymer simulations and experimental perturbations led to a model of loop extrusion, in which loop-extruding factors, such as cohesin, form progressively larger loops but stall at CTCF binding sites in convergent orientation (Sanborn et al. 2015; Fudenberg et al. 2016). According to these models, CTCF binding sites can function as anchors of chromatin loops.

Our hypothesis is, that we can use convergently aligned CTCF motifs to search for similar ChIP-seq signals at both sites of chromatin loops to predict looping interactions from the largely available ChIP-seq data in many diverse cell-types and conditions (Fig. 5.1A). We then developed and tested a computational method to predict chromatin looping interactions from only genomic sequence features and TF binding data from ChIP-seq experiments. We show that our method has high prediction performance when compared to Hi-C and ChIA-PET loops and that prediction performance depends on the ChIP-seq target, which allows screening for TFs with potential novel functions in chromatin loop formation. The predicted looping interactions can be used to (i) associate TF binding sites or enhancers to regulated genes for conditions where Hi-C like data is not available, and (ii) to increase the resolution of interaction maps, where low resolution Hi-C data is available. We implemented our method as the R package sevenC.
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6 Discussion

Recent developments in proximity-ligation methods allow measuring of pairwise chromatin interactions genome-wide. Resulting interaction maps revealed a hierarchical organization of genome folding with the property of interphase chromosomes to fold into frequently interacting domains, called TADs. This non-random organization lead to many fundamental questions of how genome folding contributes to functional segregation in genomes and how domain organization ensures precise regulation of gene expression (Chapter 1).

Chromatin interaction data can be integrated computationally with one-dimensional measurements along the genome. This allows annotating folding structures with diverse functional data such as epigenetic marks, protein binding signals, tissue-specific gene expression, or sequence conservation across genomes. Work in this thesis applied such approaches to analyze the function of TADs for gene regulation in the contexts of evolution and diseases. The results highlight the role of TADs as regulatory environments for gene expression, their stability during millions of years of evolution as well as their disruptions by disease-associated genetic variants. Furthermore, recent insights into molecular mechanisms of chromatin loop formation are used to predict long-range interactions genome-wide from protein binding data.

This section discusses the results of chapters 2, 3, 4, and 5 in light of the most recent literature and suggests further research perspectives.


6.1 Co-regulation of functionally related genes in TADs

The ability to measure gene expression genome-wide in many different tissues and conditions allowed the observation of clusters of co-expressed genes in higher eukaryotes (Boutanaev et al. 2002; Purmann et al. 2007). It was previously speculated that the structure of the chromatin and cis-acting units might be responsible for the observed co-expression (Sproul et al. 2005; Purmann et al. 2007). The ability to measure chromatin interactions leads to the discovery and characterization of TADs and enforces the question whether TADs insulate regulatory units in the genome to allow co-regulation of functionally similar genes.

To study the interplay between TADs, gene co-regulation, and evolution, we decided to focus on pairs of paralog genes. Paralogs arise from gene duplication events during evolution. Because of their homology and resulting sequence similarity, paralog genes often encode proteins with related functions. This makes them an exceptional model for functionally related and co-regulated genes. Indeed, in gene expression data from various sources across different cell types and tissues, paralogs have significantly increased expression correlation compared to other close genes (Chapter 2).

The main challenge in statistically analyzing paralog gene pairs was their bias for short genomic distances. Most duplications appear to be created by tandem duplications in direct orientation (Newman et al. 2015), which explains the clustering of paralogs in the genome and enrichment for being transcribed from the same DNA strand. These properties complicated our analysis by the need for an adequately sampled control set of gene pairs.

However, the development of careful sampling techniques results in control gene pairs that have similar properties regarding genomic distance, transcription strand, number of enhancers per gene, and the distance of enhancers to genes. These approaches allowed us to compare features of paralog gene pairs to random expectations in a statistically robust manner.

Our results show that paralogs are significantly enriched in TADs, frequently share the same regulatory enhancer and have increased Hi-C contacts, even when they are more than 1 Mb apart in the linear genome. These results show that evolutionary and functionally related genes tend to be co-regulated within TADs. Importantly, this highlights a functional organization of the three-dimensional genome, in which domain organization segregates distinct regulatory environments (Fig. 6.1).
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Zusammenfassung

Im dreidimensionalen Zellkern ist das menschliche Genome hierarchisch gefaltet. Paarweise Chromatin Interaktionen kommen gebündelt in diskreten chromosomalen Regionen vor, welche topologically associating domains (TADs) genannt werden. Ob TADs eine essenzielle Rolle spielen für die Regulation der Genexpression in der Evolution und in Krankheiten, wird in dieser Dissertation untersucht. Dazu werden genomweite Chromatin Interaktions-Karten mit verschiedensten Daten, die entlang des linearen Genoms erhoben wurden, computergestützt integriert und analysiert.

Funktional ähnliche Gene gruppieren sich dabei in TADs und teilen sich regulatorische Elemente im Genom, um eine koordinierte Expression zu ermöglichen. TADs werden mehrheitlich stabil über die Evolution vererbt und sind mit konservierter Genexpression assoziiert. Zerstörungen von TADs durch Chromosomenmutationen während der Evolution oder in genetischen Erkrankungen sind mit Änderungen von Genexpression assoziiert. Daten über Chromatin Interaktionen und TADs können genutzt werden, um gen-regulatorische Effekte von strukturellen Chromosomenaberration zu interpretieren, wie hier anhand von Patienten mit diversen klinischen Phänotypen gezeigt wird. Außerdem wurde eine Software entwickelt, um anhand von genetischen Sequenzeigenschaften und Gewebe-spezifischen Signalen von Protein-Bindestellen, genomweite Chromatin Interaktionen mit hoher Genauigkeit vorherzusagen.

Diese Arbeit zeigt, dass TADs nicht nur strukturelle Einheiten von Chromosomen sind, sondern entscheidende funktionale Bausteine von Genomen sind, welche das regulatorische Umfeld von Genen definieren. Daher wird es zunehmend wichtig, die Faltung des Genoms zu berücksichtigen, sowohl in der genomischen Forschung, als auch in der klinischen Praxis.
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